Planar Radial Spots in a Three-Component FitzHugh-Nagumo System
نویسندگان
چکیده
Localized planar patterns arise in many reaction-diffusion models. Most of the paradigm equations that have been studied so far are two-component models. While stationary localized structures are often found to be stable in such systems, travelling patterns either do not exist or are found to be unstable. In contrast, numerical simulations indicate that localized travelling structures can be stable in three-component systems. As a first step towards explaining this phenomenon, a planar singularly perturbed three-component reaction-diffusion system that arises in the context of gas-discharge systems is analysed in this paper. Using geometric singular perturbation theory, the existence and stability regions of radially symmetric stationary spot solutions are delineated and, in particular, stable spots are shown to exist in appropriate parameter regimes. This result opens up the possibility of identifying and analysing drift and Hopf bifurcations, and their criticality, from the stationary spots described here.
منابع مشابه
Bifurcations to travelling planar spots in a three-component FitzHugh–Nagumo system
In this article, we analyse bifurcations from stationary stable spots to travelling spots in a planar three-component FitzHugh–Nagumo system that was proposed previously as a phenomenological model of gas-discharge systems. By combining formal analyses, center-manifold reductions, and detailed numerical continuation studies, we show that, in the parameter regime under consideration, the station...
متن کاملCoexistence of stable spots and fronts in a three-component FitzHugh–Nagumo system
We investigate regions of bistability between different travelling and stationary structures in a planar singularly-perturbed three-component reaction-diffusion system that arises in the context of gas discharge systems. In previous work, we delineated the existence and stability regions of stationary localized spots in this system. Here, we complement this analysis by establishing the stabilit...
متن کاملAn improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations
In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main probl...
متن کاملPattern Formation of the FitzHugh-Nagumo Model: Cellular Automata Approach
FitzHugh-Nagumo (FHN) model is a famous Reaction-Diffusion System which first introduced for the conduction of electrical impulses along a nerve fiber. This model is also considered as an abstract model for pattern formation. Here, we have used the Cellular Automata method to simulate the pattern formation of the FHN model. It is shown that the pattern of this model is very similar to those...
متن کاملAmplifying mirrors for terahertz plasmons
Related Articles Feedback controller for destroying synchrony in an array of the FitzHugh–Nagumo oscillators Appl. Phys. Lett. 101, 223703 (2012) A 490GHz planar circuit balanced Nb-Al2O3-Nb quasiparticle mixer for radio astronomy: Application to quantitative local oscillator noise determination J. Appl. Phys. 112, 093919 (2012) Investigation of an improved relativistic backward wave oscillator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Nonlinear Science
دوره 21 شماره
صفحات -
تاریخ انتشار 2011